

Nd:YVO4 Crystal Basic Properties:

Atomic Density	1.26x10 ²⁰ atoms/cm ³ (Nd1.0%)
Crystal Structure	Zircon Tetragonal, space group
	D _{4h} -I4/amda=b=7.1193A,c=6.2892A
Density	4.22g/cm ³
Mohs Hardness	4-5(Glass-like)
ThermalExpansion Coefficient(300K)	$a_a = 4.43 \times 10^{-6} / K$ $a_c = 11.37 \times 10^{-6} / K$
Thermal Conductivity Coefficient(300K)	//C:0.0523W/cm/K, ⊥C:0.0510W/cm/K

Nd:YVO4 Crystal Optical Properties:

Lasing wavelength	1064nm,1342nm
Thermal optical coefficient (300K)	$dn_o/dT=8.5\times10^{-6}/K$ $dn_e/dT=2.9\times10^{-6}/K$
Stimulated emission cross-section	25×10 ⁻¹⁹ cm ² @ 1064nm
Fluorescent lifetime	90µs(1% Nd doping)
Absorption coefficient	31.4cm ⁻¹ @810nm
Intrinsic loss	0.02cm ⁻¹ @1064nm
Gain bandwidth	0.96nm@1064nm
Polarized laser emission	п polarization; parallel to optic axis(c-axis)
Diode pumped optical to optical efficiency	>60%
Sellemeier equations (λ in um)	$\begin{array}{l} n_{0}{}^{2} = 3.77834 + 0.069736 / (\lambda^{2} - 0.04724) - 0.010813\lambda^{2} \\ n_{e}{}^{2} = 4.59905 + 0.110534 / (\lambda^{2} - 0.04813) - 0.012676\lambda^{2} \end{array}$

Nd:YVO4 Crystal Laser Properties:

1. One of the most attractive character of Nd:YVO4 is, compared with Nd:YAG, it has 5 times larger absorption coefficient in a broader absorption bandwidth around the 808 nm peak pump wavelength, which just matches the standard of high power laser diodes currently available. This means a smaller Nd:YVO4 crystal that could be used for the laser, leading to a more compact laser system. For a given output power, this also means a lower power level at which the laser diode operates, thus extending the lifetime of the expensive laser diode. The broader absorption bandwidth of Nd:YVO4 which may reaches 2.4 to 6.3 times that of Nd:YAG, is also valuable. Besides more efficient pumping, Nd:YVO4 also means a broader range of selection of diode specifications. This will be helpful to laser system makers for wider tolerance and lower cost choice.

2. Nd:YVO4 crystal has larger stimulated emission cross-sections, both at 1064nm and 1342nm. When a-axis cut Nd:YVO4 crystal lasing at 1064m, it is about 4 times higher than that of Nd:YAG, while at 1340nm the stimulated cross-section is 18 times larger, which leads to a CW operation completely outperforming Nd:YAG at 1320nm. These make Nd:YVO4 laser be easy to maintain a strong single line emission at the two wavelengths.

3. Another important character of Nd:YVO4 lasers is, because it is an uniaxial rather than a high symmetry of cubic as Nd:YAG, what it emits is only a linearly polarized, thus avoiding undesired birefringent effects on the frequency conversion. Although the lifetime of Nd:YVO4 is about 2.7 times shorter than that of Nd:YAG, its slope efficiency can be still quite high for a proper design of laser cavity, because of its high pump quantum efficiency.

The major laser properties of Nd:YVO4 vs Nd:YAG are listed in Table below, including stimulated emission cross-sections (σ), Absorption Coefficient (a) Fluorescent lifetime (τ),Absorption Length (La),threshold Power (Pth) and Pump Quantum Efficiency (η s).

Laser Crystal	Doping	σ	а	т	La	P _{th}	ηs
	(atm%)	(10 ⁻¹⁹ cm ²)	(cm ⁻¹)	(µs)	(mm)	(mW)	(%)
Nd:YVO ₄ (a-cut)	1.0	25	31.2	90	0.32	30	52
	2.0	25	72.4	50	0.14	78	48.6
Nd:YVO ₄ (c-cut)	1.1	7	9.2	90		231	45.5
Nd:YAG	0.85	6	7.1	230	1.41	115	38.6

Diode pumped Nd:YVO4 laser output comparing with diode pumped Nd:YAG laser:

Crystals	Size(mm ³)	Pump Power	Output (at 1064nm)
Nd:YVO ₄	3x3x1	850mW	350mW
Nd:YVO ₄	3x3x5	15W	6W
Nd:YAG	3x3x2	850mW	34mW

Diode pumped Nd:YVO4+KTP green laser:

8W green laser was generated from a 15W LD pumped 0.5% Nd:YVO4 with intracavity KTP.

200mW green outputs are generated from 1W LD pumped 2% Nd:YVO4 lasers by using the 2x2x5mm KTP and 3x3x1mm Nd:YVO4.